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Abstract: This paper presents a genetic-based approach to determine optimal values of frequency and transmission 

power in beacon-based ad-hoc networks. The approach has been evaluated through simulations, and it has 

demonstrated to be more efficient than a dynamic control of frequency and transmission power, with 

reduction of up to 73% in packet collisions and with reduction of packet losses of up to 63% in an urban 

scenario. The approach and the results presented in this paper represent our initial efforts towards a more 

efficient control of beacon frequency and transmission power, which can exploit the benefits of a genetic-

based approach but that can be applied in runtime in practical scenarios. 

1 INTRODUCTION 

Intelligent transportation systems (ITSs) refer to the 

integration of information and communication 

technologies with transport infrastructures. The goal 

is to design novel applications to enhance road 

safety and traffic efficiency (Maimaris, 2016). To 

this end, modern vehicles are equipped with multiple 

sensors such as global positioning system (GPS) 

receivers, proximity sensor, cameras, among others. 

These sensors are used for different applications 

such as parking assistance, lane keeping, pedestrian 

detection. In this regard, information exchange 

among vehicles is essential to expand the scope of 

these applications. However, in order to provide 

information to each vehicle, especially those that are 

not in the field of vision of drivers, it is of 

paramount importance the design of timely efficient 

dissemination approaches.  

A prominent approach to message dissemination 

relies on the deployment of vehicular ad hoc 

networks (VANETS). In a VANET, the vehicles are 

equipped also with On-Board Units (OBUs) and air 

interfaces allowing the information exchange via 

either vehicle-to-vehicle (V2V) or vehicle-to-

infrastructure (V2I) communication paradigms 

(Fazio, 2013; Reis, 2014). VANETs operate on the 

dedicated short-range communication (DSRC) 

spectrum at 5.9 GHz to be used exclusively for V2V 

and V2I communications (Zhu, 2003). DSRC relies 

on several standards designed for vehicular 

communications, including the IEEE 802.11-OCB1 

operation mode, formerly known as IEEE 802.11p 

(IEEE, 2016), which defines physical (PHY) and 

medium access control (MAC) layers for Wireless 

Access in Vehicular Environments (WAVE) (IEEE, 

2017). 

VANETs can be considered as a subset of mobile 

ad-hoc networks (MANETs), but they have specific 

characteristics that distinguish them (Dorronsoro, 

2014) in terms of topology changes, low link 

availability, communication paradigms, etc. An open 

research challenge in VANETs is how to provide 

cooperative knowledge among vehicles, which in 

turn is a basic requirement of multiple applications 

of road safety and traffic management. This 

cooperative knowledge is built upon the periodic 

exchange of messages called beacons, which contain 

important data, about the status of the vehicle, such 

as position, speed, and acceleration (ETSI, 2014). 

The beaconing process, allows the receiver vehicles 

to create a Local Dynamic Map (LDM) based on 

surrounding environment information, which is 

essential for the proper performance of cooperative 

awareness applications, which also require high 

reliability and low delays. However, the wireless 

cooperation between vehicles is a challenging 



 

problem due to a large amount of dynamic data. In a 

VANET, the problem becomes more stringent due to 

the mutual interferences (Cailean, 2014).  

It is worth noting that, while a fixed beacon 

transmission rate can easily increase the channel 

load and saturate the network, especially in 

scenarios with high vehicle density (Schmidt, 2010), 

a reduction of the beacon transmission rate may 

result in a reduction of quality and freshness of the 

information (Jiang, 2008). Consequently, the 

position errors can impact the proper performance of 

cooperative safety applications, which rely on real-

time accurate information. In this context, the 

Vehicle Safety Communications Consortium 

(CAMP, 2005), specifies 10 beacon/s as the 

minimum beacon rate required by several 

cooperative safety applications, while others can 

demand up to 50 beacons/s. 

In this regard, defining the beacon 

communication parameters that can meet the 

requirements of all applications for all potential 

scenarios is a very complex task, since the beacon 

requirements depend on application type (Sepulcre, 

2011a) and vehicular context (Sepulcre, 2011b). 

Therefore, it is essential to define the most relevant 

metric for safety-critical applications. In this sense, 

in previous work (Bolufé, 2017; Ortega, 2018) we 

proposed the position error as the priority metric, 

due to its impact on the timely detection of 

potentially dangerous situations. More specifically, 

in (Bolufé, 2017), we proposed an algorithm that 

dynamically adjusts the beacon rate based on vehicle 

movement status. This approach was experimentally 

evaluated in (Ortega, 2018), using test bed 

equipment for vehicular communications. The 

objective of these previous works is twofold. On the 

one hand, these previous works assess the dynamic 

adjusting of the beacon rate to achieve a target 

position error, that can meet the requirements of 

cooperative safety applications. On the other hand, 

driven by the vehicle movement status, the approach 

adjusts the transmit power considering the channel 

load and the beacon rate with the aim of reducing 

packet collisions.  

More recently, in (Bolufé, 2018), we propose the 

use of a novel joint power & rate control distributed 

algorithm in cooperative vehicular networks. 

Simulation results show that the dynamic control of 

beacon transmission rate limits the average position 

error, and the use of maximum transmit power leads 

to an increase of packet collisions. However, the 

joint power & rate control allows reducing the 

packet collisions. Although the approach in (Bolufé, 

2018) outperforms other beaconing strategies in 

terms of a trade-off between the main performance 

metrics, we believe that the fine-tuning, by 

evolutionary algorithms, of this joint power & rate 

control will allow obtaining better results.  

This paper presents our initial efforts toward 

intelligent tuning of frequency and transmission 

power adjustment in beacon-based VANETs. This 

paper presents an approach to exploit the benefit of 

genetic algorithms in the setting of beacon rate and 

power transmission parameters. More specifically, 

the contributions of this work are as follows: 

 We propose the use of genetic algorithms (GA) 

to search for beacon rate and power 

transmission parameters that outperform other 

approaches in terms of packet losses, packet 

delivery, and number of collisions.  

 To the best knowledge of the authors, this study 

presents the first reference to the use of GAs in 

the beaconing process. 

This paper is organized as follows. Section 2 

presents the state of the art. Section 3 presents the 

baseline approach to adapt beacon rate and power 

transmission parameters. Section 4 presents our 

initial approach towards intelligent control of rate 

and power transmissions. Section 5 presents 

simulation results. Section 6 concludes the paper.  

2 STATE OF THE ART 

Adaptive beacon techniques have been the 

subject of research since the last decade, all in all, 

assuming simplified scenario conditions. The main 

goal of these techniques is to adapt the beacon rate 

and power effectively considering the channel load 

and specific application requirements. To address 

this problem, different adaptive beacon strategies 

have been proposed (Shah, 2016; Zemouri, 2014; 

Sepulcre, 2016; Aygun, 2016). These strategies 

combine the control of beacon rate and transmission 

power, according to the channel load and specific 

application requirements. In (Zemouri, 2014) the 

transmission rate is adapted to meet the channel 

requirements in terms of collision rate and channel 

busy ratio (CBR), while the transmit power is 

adjusted according to the required awareness level. 

In the algorithm of Sepulcre et al. (Sepulcre, 2016), 

the packet rate of each vehicle is set according to the 

minimum beacon rate required by each application 

and it is set according to the required packet 

reception rate at the application warning distance. 

The algorithm, of Aygun et al. (Aygun, 2016), 

adapts the transmit power in order to reach a desired 

awareness ratio at the target distance while adjusting 



 

the beacon rate to limit the current channel busy 

ratio. However, all these approaches do not consider 

the vehicle movement status and the vehicular traffic 

dynamics, factors that affect the system 

performance. 

Optimization methods can be broadly classified 

into two main classes: exact and approximate (Talbi, 

2009). On one hand, exact methods ensure finding 

the optimal solution to the optimization problem. 

However, their complexity and high computational 

demand are not suitable to tackle real-world 

optimization problems. Alternatively, evolutionary 

algorithms (EAs), which are population-based 

metaheuristics, allow obtaining acceptable solutions 

in a reasonable time (Dorronsoro, 2014). EAs have 

been widely used in many scientific domains such as 

ad-hoc networking (Reina, 2016). Depending on the 

execution mode, the EAs can be deployed in 

VANETs following an off-line or an on-line 

approach. While off-line approaches help to search 

for the best suitable parameters configuration, a 

special care must be taken in highly dynamic 

scenarios. On the other hand, online approaches are 

expected to adapt their behavior (i.e., find the best 

parameter solutions) during runtime. 

In this regard, EAs have been employed in 

optimization processes to finding optimum topology 

in MANETs (Reina, 2016) as well as to optimize the 

deployment of Road Side Units (RSUs) to maximize 

the coverage (i.e., number of vehicles covered) in a 

given area (O. Dengiz, 2011). More specifically, in 

(Galaviz-Mosqueda, 2016), the authors proposed a 

component-based methodology using GAs for the 

membership functions tuning problem for 

broadcasting protocols in VANETs. Other recent 

examples of the use of GAs in VANETs are on 

optimizing the topology connectivity (Dorronsoro, 

2009), realistic vehicular mobility models 

(Seredynski, 2012), optimize routing protocols 

(Toutouh, 2012), and optimizing broadcasting (Jafer, 

2016; Jafer, 2017). 

 

 
Fig. 1 PTi as a function of Li and Rbi, according to (2) 

From the aforementioned ideas, it is clear that 

genetic algorithms have been applied for optimizing 

different parameters in VANETs and MANETs. 

However, to the best knowledge of the authors, this 

study presents the first reference to the use of GAs 

in the beaconing process. 

3. DYNAMIC CONTROL OF 

TRANSMISSION PARAMETERS 

This section aims to describe the Dynamic Control 

of Beacon Transmission Rate and Power (DC-

BTR&P) algorithm developed in (Bolufé, 2018). 

Due to its enhanced performance, the DC-TR&P 

algorithm will be used as the baseline approach for 

intelligent tuning of transmission rate and power 

(described in Section 4).  

The DC-BTR&P approach adjusts the beacon 

transmission parameters to meet the position 

accuracy requirements of cooperation aware 

applications. DC-BTR&P is capable of adapting to 

the vehicular traffic dynamics and to the vehicle 

movement status reducing interferences 

guaranteeing the vehicle's minimum warning range. 

The DC-BTR&P algorithm uses the position error as 

a priority metric due to its impact on vehicular 

systems ability to detect and mitigate potentially 

dangerous traffic situations in real-time. The beacon 

rate is computed by the vehicle ni as a function of its 

velocity (vi) and acceleration (ai) expressed as:  
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, where Ibi is the beacon interval of ni (equivalent to 

the inverse of beacon transmission rate Rbi); tD is the 

transmission delay, which is equal for all vehicles by 

assuming beacons of the same size and equal data 

rate; and Ēi is the average position error computed 

by surrounding vehicles. Once the beacon rate has 

been set, DC-BTR&P adapts the beacon transmit 

power according to the relative channel load and the 

preset beacon rate, in order to decrease packet 

collisions. The beacon transmit power is adjusted by 

ni using the expression (2). 
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, where PTmin is the transmit power required by ni to 

generate a minimum warning range, PTmax is the 

maximum transmission power allowed, Lo is the 

normalized critical channel load, Li is the normalized 

relative channel load on ni and β is the weight factor, 



 

which controls the impact of the beacon rate on the 

transmission power. Li is computed considering the 

impact of multiple transmitters, and the distance to 

each neighbor vehicle. It should be noted that (2) 

controls the beacon transmission power between 

minimum and maximum transmit power values, 

being PTi = PTmin for Li = Lo, and PTi = PTmax for Li ≈ 

0 and Rbi = 1 beacon/s. Figure 1 shows the transmit 

power according to the normalized relative channel 

load and beacon transmission rate, with PTmin = 7 

dBm, PTmax = 20 dBm, Lo = 0.4, and β = 2. Note that 

the transmit power decreases when the normalized 

relative channel load or/and the beacon transmission 

rate increases, while a minimum warning range is 

guaranteed. 

4. INTELLIGENT CONTROL OF 

BEACON TRANSMISSION RATE 

AND POWER 

This section firstly provides an overview of 

fundamental concepts of GAs. Then, we elaborate 

on the integration of GAs towards providing 

intelligent tuning of frequency and power 

parameters in a beacon-based ad-hoc networking 

scenario. 

4.1 Fundamentals of GAs 

The genetic algorithm is based on the evolution 

process of living beings. In which, over generations, 

the populations evolve following the principles of 

natural selection (the survival of the fittest) 

postulated by Darwin. This algorithm was proposed 

by Goldberg and Holland in 1998 (Goldberg, 1998).  

The baseline procedure of a GA is depicted in 

Fig. 2. The initial population is randomly created as 

a set of candidate solutions, where an objective 

function is used a fitness measure. Based on this 

fitness, the better individuals (solutions) have a 

higher probability to be selected to the next 

generation by applying recombination and mutation. 

The recombination process is applied to two selected 

individuals (parents), resulting in two new solutions. 

On the other hand, the mutation process is applied to 

one individual and it results in one new solution. 

Therefore, by applying recombination and mutation 

processes, the algorithm produces a set of new 

solutions, called children. Based on their fitness, 

these children compete for a place in the next 

generation. This procedure can be iterated until a 

solution is found or a previously set of generations 

limit is reached. 
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Crossover

Mutation

Stop 
criterion

No

1 0 1 1 F(1,0,1,1)= 11
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1

N 0 0 1 1

Gen

1 0 1 1

1 0 0 0

1 1 0 0

1 1 1 1

Parents

Children

1 0 1 1 1 1 1 1

Bit Inversion

Yes

1 0 1 1

Final solution

F(1,1,1,1)= 15

Individual 1
Individual 2
Individual 3
Individual 4

 
Fig. 2 General scheme of a genetic algorithm 

4.2 GA-based Control of Beacon 

Transmission Rate and Power (GA-

BTR&P) 

This section presents our initial GA-based 

Transmission Rate and Power (GA-BTR&P) control 

approach. GA-BTR&P adjusts the transmission rate 

and power at once, taking into account deterministic 

rules based on the vehicle travel speed. For this 

purpose, we performed a discretization of the travel 

speed values in 10 possible ranges, which are shown 

in Table 1. It should be mentioned that the Vmax 

value is the maximum possible travel speed of a 

vehicle (Vk) during a given simulation. The Fig. 3 

shows the GA-BTR&P flow diagram to obtain the 

values of frequency  and power transmission  

of the vehicle k (vehk). 
Table 1. Ranges of the travel speeds for deterministic rules 

Speed Range (i) Vehicle speed (Vk) 

1 0   - 10  km/h 

2 11 - 20  Km/h 

3 21 - 30  Km/h 

4 31 - 40  Km/h 

5 41 - 50  Km/h 

6 51 - 60  Km/h 

7 61 - 70  Km/h 

8 71 - 80  Km/h 

9 81 – 90  Km/h 

10 91 -  Km/h 



 

 

 
**Vk is the speed of the vehicle k (vehk) 
 

Fig. 3 Deterministic & rule-based definition of 

frequency and power transmission values 

 

The GA-BTR&P approach considers the range of 

the travel speed to determine the values of frequency 

Xi,k and power transmission Yi,k, for the  speed range 

of vehicle k (vehk). It is important to mention that the 

values of the variables Xi,k, and Yi,k are determined 

(i.e. optimized) with the genetic algorithm. For this 

reason, we propose the encoding presented in Fig. 4 

for the vehicles. Each vehicle is represented by a set 

of 20 variables: 10 related to the frequency and 10 

related to the power transmission. We consider one 

variable of frequency and one variable of power 

transmission for each range  of vehicle speed 

presented in Table 1. 

 

X1,k X2,k X3,k X4,k X5,k X6,k X7,k X8,k X9,k X10,k Y1,k Y2,k Y3,k Y4,k Y5,k Y6,k Y7,k			Y8,k Y9,k		Y10,k

Transmission 

frequencies.
Transmission

power.

Vehiclek

 
Fig. 4 Proposed vehicle encoding 

 

Each population individual is represented by a 

set of k vehicles, where k is the total number of 

vehicles in the scenario as it is graphically shown in 

Figure 5.  It should be mentioned that each vehicle 

consists of a set of 20 variables (see vehicle 

encoding in Fig. 4). 

 

(Individual of the population)

Vehicle1 Vehicle2 … Vehiclek

 
Fig. 5 Proposed individual encoding 

 

In order to lay down the concepts of our GA-

based approach, we make use of a simulation 

platform where the GA-based approach can iterate 

and refine (i.e. optimize) the values for transmission 

rate and power. For this purpose, we use the 

OMNet++ simulation platform, although our 

approach can be applied to other platforms. Figure 6 

represents the optimization scheme for k vehicles 

where each vehicle has 20 candidate variables, 10 

for transmission power transmission and 10 for 

beacon rate (see encoding in Fig. 4). The 

performance of each population individual (i.e. the 

set of k*20 variables) is evaluated through 

OMNet++ simulations. The performance of each 

population individual is evaluated in an urban 

mobility scenario for which the optimization 

procedure is executed. In each simulation (i.e. 

evaluation), the number of packet collisions is used 

to calculate the fitness value. A lower number of 

collisions represents a greater fitness value of the 

population individual. Each evaluation of the 

population individual is followed by the selection, 

recombination, and mutation processes of the 

genetic algorithm until the stop criterion is met. At 

the end of the evolutionary process, the best 

parameters of frequency and transmission power for 

each speed range of each vehicle are obtained for a 

given urban mobility scenario. 
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Fig. 6 GA-based simulation platform 

5. SIMULATION RESULTS AND 

TECHNICAL DISCUSSION 

This section compares the performance of the 

baseline DC-BTR&P algorithm with our GA-based 

Transmission Rate and Power (GA-BTR&P) control 

approach. 



 

5.1 Simulation setup 

Our simulations are intended to evaluate the 
performance of the above approaches to disseminate 
cooperative knowledge. The simulations were 
performed considering a scenario with a grid-shaped 
square of five streets on each side. The square has 
sixteen blocks of 200m per side. Each street is 
crossed by a car with the direction shown in Fig. 7. 
The maximum speed of the vehicles was set to 
100km/h, with an acceleration and deceleration of 2 
m/s2 and 4.5 m/s2 respectively. The simulation 
parameters are summarized in Table 2.  

 

Table 2. Simulation parameters  
Parameter Value 

Map shape grid 

Number of streets 5 x 5 

Dimensions 0.8 km x 0.8 km 

Maximum speed 100 km/h (27.8 m/s) 

Acceleration 2 m/s2 

Number of vehicles 10 

Vehicle travel time ≈ 80 sec 

 

 

Fig. 7 Simulation map with directions of vehicles 

5.2  Comparative results 

This section compares the performance of the 

DC-BTR&P and GA-BTR&P approaches. Namely, 

we evaluate their performance in terms of number of 

collisions and packet delivery, which in turn are 

representative parameters that allow for efficient 

cooperative knowledge. Table 3 shows the 

performance of the transmission rate and power 

parameters defined by both, the DC-BTR&P and 

GA-BTR&P approaches.  

 
Table 3. Performance comparison for cooperative 

knowledge 

Metric DC-BTR&P GA-BTR&P 

Packets Sent 
4051 4052 

Lost packets 
49 18 

Delivery effectiveness 
98.79% 99.55% 

Number of collisions 
48 13 

 

In more detail, Table 4 shows the actual values 

of the vehicles in our simulations for each metric. 

The results demonstrate that our GA-based approach 

can reduce the number of collisions up to a 73% and 

the packet losses can be reduced up to a 63% in this 

urban scenario. These results demonstrate that the 

performance of a dynamic allocation of beacon 

transmission rate and power certainly can be 

enhanced with the use of an intelligent approach, i.e. 

based on a genetic algorithm. Nevertheless, there are 

important aspects that need to be considered 

regarding these partial conclusions. These are 

discussed in the next section.  

 
Table 4. Values produced for each vehicle in simulations 

Metric 

 

 

Vehicle 

Packets Sent Packets lost Number of 

collisions 
DC 

BTR&P 

GA 

BTR&P 

DC 

BTR&P 

GA 

BTR&P 

DC 

BTR&P 

GA 

BTR&P 

Veh[0] 
396 396 3 2 3 1 

Veh [1] 
397 397 1 0 1 0 

Veh [2] 
396 396 3 0 3 0 

Veh [3] 
432 432 5 2 5 2 

Veh [4] 
395 395 13 3 12 2 

Veh [5] 
398 398 1 1 1 0 

Veh [6] 
398 398 1 1 1 0 

Veh [7] 
420 421 15 6 15 5 

Veh [8] 
397 397 2 0 2 0 

Veh [9] 
422 422 5 3 5 3 

TOTAL 4051 4052 49 18 48 13 

5.3 Technical discussion 

The results presented in Section 5.2 are 

encouraging, they demonstrate that there is still a 

reasonable margin to enhance the performance of the 

DC-BTR&P by means of an intelligent approach. 

Moreover, there are important aspects that deserve 

special attention in this respect. 



 

On the one hand, the DC-BTR&P approach is a 

distributed beaconing algorithm that performs 

transmission frequency (Ftx) and transmission 

power (Ptx) adjustments in each vehicle. In the 

implementation of this algorithm, each vehicle 

calculates the Ftx according to its speed and the 

average position error limit perception of its 

neighbors. Then the transmitter vehicle calculates 

the probability of successful reception of its 

neighbors and with the Ftx already calculated, the 

Ptx of the same vehicle is calculated. Before sending 

a beacon, each vehicle makes these calculations to 

minimize the average position error (dynamically 

adjusting the Ftx) and to reduce the number of 

collisions (by adjusting the Ptx).  

On the other hand, the GA-BTR&P approach 

uses a genetic algorithm to find in each vehicle, the 

best values of Ftx and Ptx to achieve a reduction in 

the number of collisions in the scenario for the speed 

ranges of each vehicle. Nevertheless, this approach 

has to execute a number of iterations, which in turn 

makes it computationally expensive so that, it 

difficult to be applied to practical scenarios. A trade-

off solution that can exploit the benefits of our GA-

BTR&P approach in favor of a fast and more 

efficient version of the DC-BTR&P approach will be 

the basis of our future work.  

6. CONCLUSIONS AND FUTURE 

WORK 

This paper has presented our initial steps towards 

intelligent tuning of frequency and transmission 

power adjustment in beacon-based ad-hoc networks. 

A genetic-based beacon control has been proposed 

and simulation results have demonstrated that an 

intelligent-based approach can outperform a 

dynamic control in terms of a number of collisions 

(with reductions up to 73%) and packet losses (with 

reductions up to 63%) in our urban simulation 

scenario. Nevertheless, this advantage can be 

considered relative, as an intelligent-based approach 

like the one described in this paper can be 

computationally prohibitive for real scenarios due to 

time constraints. In this regard, we are currently 

developing a trade-off solution, where the genetic-

based approach can be used to produce values of 

frequency and transmission power that can take into 

account a target average error together with the 

number of collisions. This way, the genetic 

algorithm can be used to produce a regression-based 

polynomial function that could be used to estimate 

the beacon frequency for a given vehicle speed, 

which in turn could be used by the DC-BTR&P 

approach to produce frequency values to enhance its 

performance closer to the performance of the GA-

BTR&P approach but in runtime.  
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APPENDIX I. GLOSSARY OF 

ACRONYMS  

Channel Busy Ratio (CBR) 

Dedicated Short-Range Communication (DSRC) 

Dynamic Control of Beacon Transmission Rate and 

Power (DC-BTR&P) 

European Telecommunications Standards Institute 

(ETSI) 

Evolutionary Algorithm (EA) 

Genetic Algorithm (GA) 

Genetic Algorithm-based Transmission Rate and 

Power (GA-BTR&P) 

Global Positioning System (GPS) 

Local Dynamic Map (LDM) 

Mobile Ad-hoc Networks (MANETs) 

On-Board Units (OBUs) 

Physical Layer (PHY) 

Road Side Units (RSUs) 

Transmission Frequency (Ftx) 

Transmission Power (Ptx) 

Vehicle-to-Infrastructure (V2I) 

Vehicle-to-Vehicle (V2V) 

Vehicular Ad-hoc Networks (VANETS) 

Wireless Access in Vehicular Environments 

(WAVE) 
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